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In [ll it was shown by the direct method of Liapunov that an equilibrium 

state of an ideally conducting fluid is unstable, if there exist dis- 

placements of the fluid e(r) from the equilibrium position, for which 

the potential energy of the system U(c) < 0. One naturally expects that 

if the potential energy of the system increases (II{c) > 0) for all 

admissible E(r), then the equilibrium position is stable. However, using 

the definition of stability in [II, which does not restrict the deriva- 

t ives ac/az,, it is impossible to prove this assertion. Taking the de- 

finition of stability in [d, there are admitted large perturbations of 

at/a,,, and particularly, large perthrbations in the potential energy of 

the system, We observe that an analogous situation occurs in studying 

the stability of elastic systems [d. 

In the present paper, we give a definition of the stability of equi- 

librium positions of ideally conducting fluids, different from the de- 

finition given in [l], and establish sufficient and necessary criteria 

for stability, which are close to the well-known criteria based on the 

energy principle 13-51. 

1. ‘Ihe equations of motion for a small fluid displacement c(r, t) 

from the equilibrium position !iave the form [3-51 

(1.1) 

- &H x rotrot(S x H) +,&rot H x rot,(E x H) (1.2) 
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JIere p, p and If are the equilibrium values of the fluid density, pres- 

sure, and the magnetic field intensity, y is the adiabatic exponent, q 

and i are the viscosity coefficients, V = i is the velocity of the fluid, 

and Fi, is the !Cronecker delta. 

In order not to consider any perturbations of the magnetic field in 

the regions not occupied by the fluid, we assume that 5 = 0 on the sur- 

face .C, which is the boundary of tne volume V occupied by the fluid. 

Let C(t, r, C,,(r), &,(r)) d enote the solution to Equation (1.11, 

satisfying the boundary conditions and the initial conditions < = go(r), 
.$ = io(r), at t = 0. rloreover, we shall assume that Equation (1.1) has 

solutions twice continuously differentiable with respect to xk defined 

for all t > 0, if tjo(r) and ijo(rF) are twice continuously differentiable 

with respect to xk. 

We note that in what follows the initial data tj,,(r) and e,,(r) are 

always twice continuously differentiable, even though they are not so 

specified explicitly. 

Then we find from (1. 1) that 

dL?’ 
dt== 

~- bV < 0 (E cE, & = I’ &I -i- CJ {%,I 

(T is the kinetic energy, li the potential energy) 

(1.4; 

In the expressions (1.5) and (1.6) the integrations are i;aken over 

the volume V. ‘he functional rN<> contains <, ?g/?x, 2*~/~wiaxk. !Jow- 

ever, using integration by parts and the fact that c vanishes on .c, one 

readily sees that the second derivatives ;3*~,/?~~&~ are not contained in 

I!(c). Obviously, 7’(O) = r.i(o) = 0 

3 L. ‘Ye denote 

In (2. 11, t!le integrations are carried out over the vol~mt- i’, I~<,‘>.T~ 
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is the vector with coordinates aSi/&,, and the coefficient a character- 

istic of the numbers of dimensions is a positive constant. We observe 

that under the integral sign defining pr, we may introduce a positive 
weight function, selected from physical ccnsiderations. 

We note that in what follows the numbers E > 0 and 6 > 0 are always 

bounded above by some number u > 0, even though not explicitly stated. 

We now give the definitions of stability and instability of an equi- 

librium position. 

Definition 2.1. An equilibrium position is stable, if for any Ed > 0 

and s2 > 0 there exist 6, > 0 and 5, > 0, such that if 

Pl {5, (41 < 61, P2 &I WI < 82 (24 

then for all t > 0 

PI {E (t, r, E, (4, to @))I < elf P2 {t (t, rl 5, (4, if, (r))l < et (2.3) 

Definition 2.2. An equilibrium position is unstable, if there exists 

at least one of the numbers Ed > O-and s2 > 0, so that for any 6, > 0 and 

6, > 0 (however small), there are always such data 

that at least one of the following inequalities 

PI (5 (4 r, to (4, s’, @))I > cl, p2 {ri (4 r, 5, (r), go (r))) >a e2 (2.4) 

holds for at least one value of t > 0. 

Definition 2.3. The functional V{c(r) , i(r)> is called positive- 

definite with respect to the metric p{<, 11, if V{k, c} > 0 for all 

admissible c(r) and e(r), and if for any E > 0, there exists a positive . . 
A = A(E) depending only on E, such that V{c, 5) > A for any c(r), &j(r), 

satisfying the condition p{c(r), i(r)) > E. 

The functional Tit(r)) . 1s positive-definite with respect to the 

metric p,<(h)>. 

3. We now consider the conditions of stability of equilibrium posi- 

tions of ideally conducting inviscid fluids (TJ = < = 0). 

Theorem 3.1. (IYecessary contlit ion for stability.) In order for an 

equilibrium position of an ideally conducting inviscid fluid to be 

stable, it is necessary that I$$) > 0 for all admissible <(I?) (5 twice 
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continuously differentiable with respect to xk and c = 0 on .C). 

‘Jlle proof of this theorem is carried out in a similar way as the proof 

of Theorem 1 of [l] . 

Coro 11 m-y. (Suff zcient condition for instability.) From theorem 3.1, 

it follows that if there exists a c(r) with L’{c(r)) < 0, then the equi- 

librium position of the ideally conducting inviscid fluid is unstable. 

Theorem 3. 2. (.'%ff Lcient condition for stability.) Tf II(c) is a 

positive-definite functional with respect to the metric pl.(Q, then the 

equilibrium position of an ideally corAucti.nL inviscid fluid is stable. 

Proof. !!'e select (any) Ed > 0 and E* > 0, anI1 show that we can find 

the corresponding (in the sense of Definition 2.1) o1 > 0 and 6, > 0. 

Since U(t) and T(i) are positive-definite functionals with respect to 

the metrics pl{c} and p2{,:>, respectively, t!len for the given E, > 0 and 

s2 > 0, we can find hl(~l) > 0, hZ(~p) > 0, such that 

We set h = min (A,, h2) and 

Since V - 0 as p&Q - 0, p2{@ - 0, then for A > 0, we find S, > 0 

and 6, > 0 (El < Ed, 6, < aq), such that 

v (5, rj> < h for PIG, < 61, P2 15, < 62 (3.3’ 

!Ve show that the F, > 0 and 6, > 0 tllus found correspond to the given 

a1 > 0 and Ed > 0 in the sense of Jkfinition 2.1. 

We assume the converse, i.e. that at some moment t = -r, at least. one 

of the following inequalities holds: 

where 

Ilien the following inequaiity will 1Je satisfied: 

V (5 (5, r, 5, (r), f,, (r)), E (r, r, E, (r), &I @))I > h (3.5) 
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On the other hand, according to (1.4) for t > 0 

since !!'E 0. From this, we have 

since 

p1 (5, WI < 4, p2 IS, W < 6, 

The resulting contradiction shows that none of the inequalities (3.4) 

could hold. Consequently, for all t > 0 

p1 15 (t, r, h(r), i0 (4)) <.&I, (3.8) 

i.e. the equilibrium position is stable. Q.I:.i). 

C:e remark that in a similar manner it is possible to prove that 

I$<) > 0 gives a stable.equilibrium position, with stability as defined 

in[ll , if the initial perturbations are sufficiently smooth 

where crl and a2 are constants). 

Theorem 3.2 is analogous to the wellknown theorem of Lagrange [6], 

the generalization of which was given by llovchan to study the stability 

[z] of elastic systems and solid bodies [7I. 

Obviously, an equilibrium position of an ideally conducting inviscit 

fluid cannot be asymptotically stable. 

4. k now consider the case of a viscous ideally conducting fluid. \::e 

remark that the influence of viscosity on the stability of equilibrium 

positions of incompressible fluids has been considered 1.y Hare using the 

method of normal waves [Al] . 

Theorem 4.1. (Suff rcient condition for instability.) If there exist 

c(r) such that U{c(r)? < 0, then the equilibrium position is unstable 

with viscosity present. 

Proof. V:e assume that the equilibrium state is stable. We choose 
E~ > 0 and ~z > 0; then there exist 6, > 0 and 6, > 0, such that if 

~1% (r)> < a,, ~2 6 (41 < 62 (4.1) 
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where the integrations are carried out over the,volume V. 

If < is a solution to Equation (1.1)) then 

dV 
- = 2 (T - U) 
dt 

There exist go*(r) and .&*(r) such that 

p1 (5 (4 rS L* (4, fO* W). < 6, p2 {g (4 c Fo* (I), go* (4)) < e2 

then there exists a A > 0, such that for t 2 0 

vfj (L rr iTo*@% &*Pt>, e (6 f, L*(f), h*fr))) <A 

fin the other hand, since for t 2 0 

T {i (t, r, Ep* (r), go* (r))) -+ u (5 (k r, 50* WY to* (r))) < - P < 0 

we see that for t a 0 

g v 15 (6 r, iO*(rf, go* @-)I, E(t, c h* W, Co* WI > 2~ > 0 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(/t.“j 

Consequently, as t - t m 

V (5 (t, r, to* (r). &* (r)), S; (t, r, h* (r), &I* (r))t - i- .w (4. lo? 

which contradicts (4.7). ?he resulting contradiction shows t!lat the 

asswnption that the equilibrium state is stable is false. Q,!C.!). 

Bemark. Iheorern fl (sufficient cordition for instability) in [l! is 

false, since an error has been :na~ie in its i:roof (froin the inequality 
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115 (t, r, go* (r), to* (r)) (I < e,, /Ii (t, r, b* W, Eo* (4) II < 82 for I>,() 

does not follow inequality (15) of [ll). 

Ilowever, the theorem remains correct if: 

1) the definition of stability is changed to that made in the present 

paper, or 

2) the definition of stability remains the same as in [l] , hut the 

additional assumption is made that /~i/?x,l (i, k 11 1, 2, 3) are smaller 

than some constant. 

Corollnry. (Necessary condition for stability.) Tn order for an equi- 

librium position of an ideally conductin, q viscous fluid to be stable, it 

is necessary that U{g(r)} ;;1. 0 for all admissible g(F). 

Theorem 4.2. (Sufficient condition for stability.) Tf II(t) is a 

positive-definite functional with respect to the metric pl{c!, then the 

equilibrium position is stable with viscosity present. 

?Iie proof of Theorem .4.2 is sir?ilar to that of Theorem 3.2 usins the i 

functional (3.2). iinly instead of inequality (3.61, there will be the 

following inequality: 

and thus, as before, inequality (3.7) holds. 

Theorems 4.1) and (4.2 are analogous to the well-known tlleorems of 

Kelvin [6] on the influence of dissipative forces on the stability of 

equilibrium states of systems of material points. 
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